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Weak S-Normality and Generalized Ordered Spaces

Masami Hosobuchi

Abstract

In this paper, we define a new notion "weak S-normality” of a topological space.
It generalizes two properties "weak perfectness” and ” S-normality” that were stud-
ied in our earlier papers. The advantage of taking this notion into account is to
widen the category of spaces related to the perfect spaces. When we discuss this
property of generalized ordered spaces, we obtain various interesting and impor-
tant examples that are useful for the studies of weakly perfect spaces and S-normal
spaces. From this point of view, we study the weak S-normality of generalized or-
dered spaces and their linearly ordered extensions.

Key words: linearly ordered space (LOTS), generalized ordered space (GO-space),
linearly ordered extension, S-normal space, weakly S-normal space.

1 Definitions and basic results

We review in this section the definition of Sj;-set. This definition is a generalization of a
Gs-set (a Gs-set is an intersection of countably many open sets) and was introduced by H.
R. Bennett [1] to study some properties of LOTS, where LOTS is used as the abbreviation
of "linearly ordered (topological) space.” See Section 2 for the definitions of LOTS and
GO-spaces.

Definition 1.1 Let X be a topological space. A subset A of X is called an Ss-set if there
exists a collection {U(1),U(2),- -} of countably many open subsets of X such that, for
two points p € A and g € X \ A, there exists an n € N such that p € U(n) and q ¢ U(n).
The collection mentioned is usually written by {U(¢) : i € N}, where N denotes the set
of natural numbers.

It is easy to see that a Gs-set is an Ss-set. Hence Ss-sets are a generalization of Gs-sets.

Definition 1.2 Let X be a topological space. X is perfect or a perfect space if every
closed subset of X is a G5-set.

As is well known, the Sorgenfrey line is a perfect space. This space is denoted by S.
The set S x {—1,0} equipped with the usual lexicographic order is also a perfect space.
This space is identified with the linearly ordered extension L(S) of S that contains S as
a dense subspace. See Section 2.

HECF T IT R



Weak .S-Normality and Generalized Ordered Spaces

Definition 1.3 Let X be a topological space. X is weakly perfect or a weakly perfect
space if every closed subset C of X has a dense subset D of C that is a G4-set.

As is shown in [3], the space of all countable ordinals is weakly perfect and is denoted
by w; or [0,w[. See [3] for further studies on weakly perfect GO-spaces.

Definition 1.4 Let X be a topological space. X is S-normal or an S-normal space if
every closed subset of X is an Ss-set.

The Michael line is an S-normal space and is denoted by M. To see this, Let C be
a closed subset of M. For a point of z € C N Q, where Q denotes the set of rational
numbers, take a collection U(z) = {U;(z) : ¢ € N} of open subsets of M such that
U(z) is a neighborhood base at z. Then a collection U{U(z) : z € C N Q} U {C NP}
guarantees for C to be an Ss-subset of M, where P denotes the set of irrational numbers.
Let M* = M x {0}UP x Z be a linearly ordered extension of M, where Z denotes the set, of
integers. See Section 2 for the definition of X*, where X is a GO-space. It is analogously
proved that M* is an S-normal space.

See [2], [4], [6] for further studies on S-normal GO-spaces.

The following concept is a natural generalization of Definitions 1.2-1.4 that takes the
main position of this paper.

Definition 1.5 Let X be a topological space. X is weakly S-normal or a weakly S-normal
space if every closed subset C of X has a dense subset D of C' that is an Ss-subset of X.

Let S be the Sorgenfrey line. It is easy to see that S* =S x {0,—1,~2,---} is weakly
S-normal since Q is dense in S and S* \ (S x {0}) is an open subset. However, S* is not
S-normal, because points (z,0) and (z,—1), z € P, can not be separated by countably
many open sets. It should be noted that L(M) is also an example of weakly S-normal
space, where L(M) = M x {0} UP x {~1,1} is the linear extension defined in Section 2.

Let [0,w] = [0,w1[U{wi} = wy U {w1} be the union of the set of all countable ordinals
and the least uncoutable ordinal w;. Then [0,w;] is a LOTS and is not weakly S-normal.
This is shown by the following proposition, because [0,w:] is not first countable at w;.

Proposition 1.6 Let X be a weakly S-normal generalized ordered space. Then X is first
countable. (For the definition of generalized ordered spaces or GO-spaces, see Section 2.)

The proof of this proposition is as same as the cases of S-normality [2] and weak
perfectness [3] of generalized ordered spaces.

Proposition 1.7 The relationships between these notions 1.2-1.5 are as follows. Any
converse of the following implications does not hold.

(1) A perfect space is weakly perfect. A weakly perfect space is weakly S-normal.

(2) A perfect space is S-normal. An S-normal space is weakly S-normal.
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Proof. The implications in (1) and (2) are clear from the definitions. We give couter-
examples. Let w; be the linearly ordered space of all countable ordinals. Then w; is a
weakly perfect space as is shown in [3], but is not perfect since the closed subset consisting
of limit ordinals in w; is not a Gs-set. The linearly ordered extensions S* and L(M) are
weakly S-normal, but not weakly perfect nor S-normal. The Michael line M and the
linearly ordered extension M™* are S-normal spaces, but are not perfect.

2 Two linearly ordered extensions and notation

A linearly ordered space (LOTS) is a linearly ordered set with the order topology .
A generalized ordered space (GO-space) is a subspace of a LOTS. For a generalized
ordered space (X, 7), that is, 7 denotes the topology on X containing A and each point
of X has a neighborhood base consisting of convex sets (with respect to the order, and
possibly degenerate sets), there are two linearly ordered extensions. One of them is X*
and was defined by D. J. Lutzer [8]. The other one is L(X) and was studied in [10].
We review here the definitions of those linearly ordered extensions. The intervals in a
GO-space or a LOTS are written by the symbols [a,b], [a,b], ]a,b] and ]a,b[. For example,
[a,b] = {z :a <z < b},[a,b]= {z : a < z < b} and so on. For a GO-space X, we set
R={zeX:[z,»>[eT—A}and L = {z € X :] +,z] € 7 — A}, where X denotes the
order topology as mentioned above. Then X* is defined as follows:

X*'=(Xx{0})U{(z,k):2€ Rk<0,keZ}U{(z,k):2€ L,k>0,ke Z} C X xZ,
where Z denotes the set of integers. On the other hand, L(X) is defined as follows:
L(X)= (X x{0})u{(z,-1):z € R}U{(z,1): 2 € L} C X x {-1,0,1}.

X* and L(X) are linearly ordered topological spaces equipped with the lexicographic order
topologies. It is esily seen that X* contains X as a closed subspace and L(X) contains X
as a dense subspace. See [8], [10] for the related topics of X* and L(X). In both cases,
X and X x {0} are identified by the correspondence of z to (z,0).

See [5] and [7] for the studies on Ss-diagonals and dense Ss-diagonals of generalized
ordered spaces and their linear extensions.

3 Separable spaces and linearly ordered extensions

Definition 3.1 Let X be a topological space. X is separable or a separable space if X
has a countable dense subset.

Theorem 3.2 If X is a separable GO-space, then we have
(1) X is first countable.
(2) X is weakly S-normal.

Proof. (1) Let D be a countable dense subset of X, say D = {d; : t € N}. Let z € R be
a point, where R is defined in Section 2. Take a decreasing sequence {d;, : k € N}(C D)
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that converges to z. Then a collection {[z,d;,[: k € N} of countably many open subsets
builds a neighborhood base at z. For z € L, we take an increasing sequence {d;, : k € N}
that converges to z. Then a collection {]d;,,z] : k¥ € N} of open subsets becomes a
neighborhood base at z. Similarly, a collection {]d;,,d;,[: K € N} of open subsets of X is
a neighborhood base at z € X \ (RU L). (2) Let C be a closed subset of X. Since C' is
separable by [9], C' is first countable by (1) and there exists a countable dense subset D¢
of C. It is easy to see that Dy is an Ss-subset of X. Hence X is a weakly S-normal space.

Remark 3.3 The Michael line is first countable and (weakly) S-normal, but not sep-
arable. Therefore, a GO-space satisfying the conditions (1) and (2) does not imply a
separable space.

Theorem 3.4 Suppose that X is a GO-space and that RU L is a countabe set. If X is
separable, then so is X*.

Proof. Since X is a separable space, there exists a countable dense subset D of X. Then
DURx{-n:ne N}UL x {n:nec N} is a countable dense subset of X*.

Remark 3.5 Theorem 3.4 does not hold without the countability of R U L. To see this,
consider the Sorgenfrey line S. A dense subset of S* must contain S*\ (S x {0}), because
the set S* \ (S x {0}) is open. Therefore, a dense subset is not countable.

Theorem 3.6 Let X be a generalized ordered space. If X is separable, so is L(X).

Proof. Since X is a dense subspace of L(X), it is easy to prove the theorem.

4 Weakly S-normal GO-spaces and linearly ordered
extensions

Theorem 4.1 Suppose that X is a generalized ordered space and that RUL is a countable
set. If X is weakly S-normal, then so is X*.

This theorem follows from the following, because a weakly S-normal GO-space is first
countable by Proposition 1.6 and an S-normal space is weakly S-normal by Proposition
1.7.

Theorem 4.2 Let X be a first countable generalized ordered space. If RUL is a countable
set, then X* is an S-normal space.

Proof. Set RUL = {d; : i € N}. Let d; € R. Since X is first countable, there exists a
decreasing sequence {zy : k € N} in X that converges to d;. Take an interval U(d;, k) =
[di, zx] in X*. Analogously, for each d; € L, take an interval V(d;, k) =|yx, d;] in X*, where
{yk : k € N} is an increasing sequence in X that converges to d;. If z € X \ (RU L),
then there exist two such sequences {zj : k € N} and {yx : k € N} that converge to x.
Take an interval W (z, k) =]y, zx[ in X*. Then we have a collection C = {U(d;, k) : d; €
R, ke NYUu{V(d;,k):dje L,k e NfU{W(z,k): 2 € X\(RUL),k € N} of countably
many open subsets of X*. Let C be a closed subset of X*. Then CU{C\ X} is a required
collection to assure C an S;s-subset of X*.
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5 Examples

Example 5.1 In the case of L(X), the situation is different from Theorem 4.1. To show
this, let X be a GO-space obtained from [0, w;] by isolating w;. Then X is a weakly S-
normal space, but L(X) is not weakly S-normal although R is a one-point set. Note that
L(X) is homeomorphic to [0, w;]U {(w1,0)}, where the point (w, —1) in L(X) is identified
with w; in [0, w].

Example 5.2 Theorem 4.2 does not hold without the additional condition of countability
of RUL. Asis already pointed out, S* is not S-normal, where R = S (the set of all
points) is not countable.

Example 5.3 Let X be a weakly S-normal GO-space. Even though RU L is a countable
set, X is not necessarily S-normal. Let I*(lex) be a unit square (LOTS) with the usual
lexicographic order. Then I?(lex) is a weakly S-normal space and R U L = ¢, but not
S-normal since a closed subset I x {0,1} can not be an Ss-subset of I?(lex).
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